Limit switches OsiSense XC Special

Catalogue

Sensors

- Selection guide page 2
- For very severe applications, type XC2J
\square Presentation and characteristics page 8
\square Complete switches, fixed boby page 10
\square Variable composition: fixed or plug-in body page 12
\square Adaptable sub-assemblies page 14
For low temperature applications (-40 $\left.{ }^{\circ} \mathrm{C}\right)$ page 20
- For high temperature applications (+120 ${ }^{\circ} \mathrm{C}$). page 23
- For materials handling applications, type XC1AC
\square Presentation page 26
\square Complete switches with slow break contacts page 28
- For hoisting and mechanical handling applications, types XCR and XCKMRFor conveyor belt shift monitoring, type XCRT
\square Presentation and characteristics page 32
\square Switches types XCR and XCKMR page 36
\square Switches type XCRT page 38
Subminiature format and microswitches
\square DIN 41635 B format, sealed and DIN 41635 D format page 46
\square DIN 41635 A format page 48
\square Sealed design, pre-cabled page 50
\square General page 52
- Limit switches OsiSense XC: general
\square Presentation and terminology page 54
\square Contact blocks page 55
\square Mounting page 57
\square Setting-up page 58
\square Reminder of standards page 60
Technical information- Protective treatment of equipment according toclimatic environmentpage 62
- Product standards and certifications page 64
- Degrees of protection provided by enclosers page 66
- Reference index page 68

Selection guide
Limit switches
OsiSense XC Standard

| Miniature format | Compact format, CENELEC EN50047 |
| :--- | :--- | :--- |
| Metal,
 pre-cabled | Plastic, |
| 1 cable entry | Plastic, |

Enclosure	
Modularity	
Conformity/Certifications	
Body dimensions ($\mathbf{w} \times \mathrm{h} \times \mathrm{d}$) in mm	
Head	
Contact blocks	
2 electrically separate contacts	snap action with positive opening operation
	slow break with positive opening operation
2 same polarity contacts	snap action
	slow break
3 electrically separate contacts	snap action with positive opening operation
	slow break with positive opening operation
4 electrically separate contacts	snap action with positive opening operation
	slow break with positive opening operation
4 contacts (2×2 same polarity contacts)	snap action
Degree of protection IP/IK	
Operating temperature	
Connection Screw terminals	
Pre-cabled	
Connector	
Type reference	
Pages	

Metal	Plastic, double insulated	
Head, body and connection modularity	Head, body and cable entry modularity	Head and body modularity
UL, CSA, CCC, GOST	CENELEC EN 50047 UL, CSA, CCC, GOST	
$30 \times 50 \times 16$	$31 \times 65 \times 30$	$58 \times 51 \times 30$

| Linear movement (plunger)
 Rotary movement (lever)
 Rotary movement, multidirectional
 Same heads for ranges XCMD, | |
| :--- | :--- | :--- |

[^0]| Compact format, CENELEC EN50047 | Compact format, with reset | | |
| :---: | :---: | :---: | :---: |
| Metal, 1 cable entry | Plastic, 1 cable entry | Plastic, 2 cable entries | Metal, 1 cable entry |
| | | | |
| Metal | Plastic, double insulated | | Metal |
| Head, body and connection modularity | - | | |
| CENELEC EN 50047
 UL, CSA, CCC, GOST | UL, CSA, GOST | | |
| $31 \times 65 \times 30$ | $31 \times 65 \times 30$ | $58 \times 51 \times 30$ | $31 \times 65 \times 30$ |
| Linear movement (plunger)
 Rotary movement (lever)
 Rotary movement, multidirectional Same heads for ranges XCMD, XCKD, XCKP and XCKT | Linear movement (plunger) Rotary movement (lever) | | |
| \bullet | \bullet | \bullet | - |
\bullet	\bullet	\bullet	\bullet
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
IP 66, IP 67, IK 06	IP 66, IP 67, IK 04 and IK06 (for XCDR)		
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$			
1 entry for ISO M16 or M20, Pg 11, Pg 13.5 cable gland or $1 / 2^{\prime \prime}$ NPT, PF $1 / 2$	1 entry for ISO M20 or Pg 13.5 cable gland or $1 / 2$ " NPT	2 entries for ISO M16 or Pg 11 cable gland or $1 / 2^{\prime \prime}$ NPT (using adaptor)	1 entry for ISO M20 or Pg 13.5 cable gland or $1 / 2$ " NPT
-			
M12	-		
XCKD	XCPR	XCTR	XCDR

[^1]Selection guide
Limit switches
OsiSense XC Standard

Enclosure
Modularity
Conformity/Certifications
Body dimensions (w x h x d) in mm
Head

\section*{| Head |
| :--- |
| Contact blocks |}

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Contact blocks } \\ \text { contacts }\end{array} & \begin{array}{l}\text { snap action with positive } \\ \text { opening operation }\end{array} \\ \hline \text { slow break with positive } \\ \text { opening operation }\end{array}\right\}$

Degree of protection IP/IK

Operating temperature	
ConnectionScrew terminals (entry for cable gland)	
\qquad Connector	
Type reference	
Pages	

| XCKM | XCKL | XCKS |
| :--- | :--- | :--- | XCKJ

Limit switches
 OsiSense XC Basic

Miniature format	Compact format EN 50047		Compact format, with reset knob	
Plastic, pre-cabled	Plastic, 1 cable entry	Plastic, 2 cable entries	Plastic, 1 cable entry	Plastic, 2 cable entries
Plastic, double insulated	Plastic, double insulated			
-				
UL, CSA, CCC, GOST	CENELEC EN 50047 UL, CSA, CCC, GOST		UL, CSA, CCC, GOST	
$30 \times 50 \times 16$	$31 \times 65 \times 30$	$59 \times 51 \times 30$	$31 \times 65 \times 30$	$59 \times 51 \times 30$
Linear movement (plunger) Rotary movement (lever) Rotary movement, multidirectional				
\bullet	\bullet	\bullet	\bullet	\bullet
-	\bullet	-	\bullet	-
-	-	-	-	-
-	-	\bullet	-	-
-	\bullet	-	\bullet	-
-	\bullet	-	\bullet	-
-	-	-		-
-	-	-		-
-	-	-		-
IP 65, IK 04				
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$				
-	1 entry for ISO M20 or Pg 11 cable gland Other cable entries (3): ISO M16 x 1.5 and PF $1 / 2$ (G1/2)	2 entries for ISO M16 or Pg 11 cable gland or 1/2" NPT (using adaptor)	1 entry for ISO M20 or Pg 11 cable gland Other cable entries (3): ISO M16 $\times 1.5$ and PF $1 / 2(\mathrm{G} 1 / 2)$	2 entries for ISO M16 or Pg 11 cable gland or 1/2" NPT (using adaptor)
$\varnothing 7.5$ PvR, CEI, halogen free, depending on model	-			
XCMN	XCKN	XCNT	XCNR	XCNTR

[^2]

Limit switches

Preventa XCS

Safety switches

Safety lim	itches	ard switches Prev						
Standard		With lever or hinge Compact format	Actuator operated					Coded magnetic for detection without contact
Miniature format	Compact format		Miniature format	Compact format	Industrial format with or without locking		Rectangular format with solenoid interlocking	
		Compact format						Rectangular or cylindrical format
Metal, pre-cabled	Metal or plastic, 1 cable entry	Plastic, 1 or 2 cable entries	Plastic, pre-cabled	Plastic, 1 or 2 cable entries	Metal, 1 cable entry		Metal, 2 cable entries or plastic, 1 cable entry	Coded magnetic switch or coded magnetic system, pre-cabled or connector
					Without locking	With locking, manual unlocking		

[^3]Presentation

Limit switches

OsiSense XC Special
For very severe applications, type XC2J

$\square \times 2$

with 1 cable entry

\square With head for linear movement (plunger)

Page 10

- With head for rotary movement (lever)

Page 10

Limit switches

OsiSense XC Special
For very severe applications, type XC2J

Environment characteristics						
Conformity to standards	Products	IEC/EN 60947-5-1, IEC 60337-1, VDE 0660-200, UL 508, CSA C22-2 n 14				
	Machine assemblies	IEC/EN 60204-1, NF C 79-130				
Product certifications	Standard version	CSA 300 V -. HD, $60 \mathrm{~W} \sim$				
	Special version	UL $250 \mathrm{~V} \sim \mathrm{HD}$ Listed, CSA $300 \mathrm{~V} \sim \mathrm{HD}, 60 \mathrm{~W}$ with 1/2" NPT tapped cable entry				
Protective treatment	Standard version	"TC"				
Ambient air temperature	For operation	$-25 \ldots+70^{\circ} \mathrm{C}$. Special adaptable sub-assemblies: $-40^{\circ} \mathrm{C}$ or $+120^{\circ} \mathrm{C}$				
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$				
Vibration resistance		$10 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to IEC 60068-2-6				
Shock resistance		25 gn (18 ms) conforming to IEC 60068-2-27				
Electric shock protection		Class I conforming to IEC 60536 and NF C 20-030				
Degree of protection		IP 65 conforming to IEC 60529, IP 657 conforming to NF C 20-010				
Repeat accuracy		0.01 mm on the tripping points, with 1 million operating cycles for head with end plunger				
Cable entry		1 entry incorporating cable gland. Clamping capacity: $6 \ldots .13 .5 \mathrm{~mm}$				
Contact block characteristics						
Rated operational characteristics		~AC-15; A300 (Ue = 240 V , le = 3 A) … DC-13; Q300 ($\mathrm{Ue}=250 \mathrm{~V}$, le = 0.27 A), conforming to IEC 60947-5-1 Appendix A, EN 60947-5-1				
Rated insulation voltage		500 V conforming to IEC 60947-5-1, group C conforming to NF C 20-040, 300 V conforming toCSA C22-2 $\mathrm{n}^{\circ} 14$				
Resistance across terminals		$\leq 25 \mathrm{~m} \Omega$ conforming to NF C 93-050 method A or IEC 60255-7 category 3				
Short-circuit protection		10 A cartridge fuse type gG (gl)				
Connection	Screw clamp terminals	XCKZ01: clamping capacity, $\mathrm{min}: 1 \times 0.5 \mathrm{~mm}^{2}, \max : 2 \times 2.5 \mathrm{~mm}^{2}$ XESP10•1: clamping capacity, $\min : 1 \times 0.75 \mathrm{~mm}^{2}, \max : 2 \times 1.5 \mathrm{~mm}^{2}$				
Minimum actuation speed		$0.001 \mathrm{~m} /$ minute				
Electrical durability		- Conforming to IEC 60947-5-1 Appendix C - Utilisation categories AC-15 and DC-13 - Maximum operating rate: 3600 operating cycles/hour - Load factor: 0.5				
		XCKZ01, XESP1021, XESP1031				
	AC supply $50 / 60 \mathrm{~Hz} \sim$ m inductive circuit					
	DC supply ---		Voltage V	24	48	120
			Power broken in W for 5 million operating cycles Nm	10	7	4

References, characteristics

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Complete switches, fixed body,
1 cable entry incorporating cable gland

Dimensions

Limit switches

OsiSense XC Special

For very severe applications, type XC2J
Complete switches, fixed body,
1 cable entry incorporating cable gland

(1) Fixing from the rear: by 2 M5 screws.

Depth of thread on switch: 10 mm .
(2) 222 max.
(3) 125 max .
(4) 148 max
\varnothing : Fixing from the front via 2 holes $\varnothing 5.5$
Cable gland incorporated (all XC2JC models).

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body
Variable composition

ZC2JC1, JC2, JC18, JC28

Rotary head
Multi-directional head

Limit switches

OsiSense XC Special

For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

Bodies with contacts for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies (see operation page 18)				
1 step	Single-pole 1 CO snap action (XCKZ01)		ZC2JC1	0.355
	Double-pole 2 CO simultaneous, snap action (XESP1021)		ZC2JC2	0.355
2 step	Double-pole 2 CO staggered, snap action (XESP1031)		ZC2JC4	0.355

Plug-in bodies (see operation page 18)				
1 step	Single-pole CO snap action		ZC2JD1	0.380
	Double-pole 2 CO simultaneous, snap action		ZC2JD2	0.380
2 step	Double-pole 2 CO staggered, snap action		ZC2JD4	0.380

Bodies incorporating gold flashed contacts, for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies (see operation page 18)				
1 step	Single-pole 1 CO snap action (XCKZ018)		ZC2JC18	0.355
	Double-pole 2 CO simultaneous, snap action (XESP1028)		ZC2JC28	0.360
2 step	Double-pole 2 CO staggered, snap action (XESP1038)		ZC2JC48	0.360

For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

Operation: page 18	Dimensions: pages 18 and 19

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

ZC2JEO•

Rotary heads (without operating lever)				
Type	Compatible bodies	Maximum actuation speed	Reference	Weight kg
Spring return (see operation page 18)				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE01	0.210
	ZC2J•4	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE04	0.210
Actuation from left	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE02	0.210
	ZC2J•4	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE06	0.210
Actuation from right	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE03	0.210
	ZC2J•4	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE07	0.210
Actuation from left OR right (see page 60)	$\begin{aligned} & \hline \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE05	0.210
Stay put (see page 60)				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE09	0.210
Multi-directional head (with operator)				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation by any moving part (see operation page 18)				
"Cat's whisker"	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$ in any direction	ZC2JE70	0.190

For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

| Contact blocks
 Type of contact | Scheme | For body | Reference | Weight
 kg |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Single-pole 1 CO
 snap action | ZC2JC1 | XCKZ01 | 0.050 | |

Contact blocks with gold flashed contacts

Type of contact	Scheme	For body	Reference	Weight kg
Single-pole 1 CO snap action	$\begin{array}{l\|l\|} \stackrel{\oplus}{\sim} & \stackrel{F}{4} \\ \forall & \cong \end{array}$	ZC2JC18	XCKZ018	0.050
Double-pole 2 CO simultaneous, snap action		ZC2JC28	XESP1028	0.055

Double-pole 2 CO
staggered,
snap action

ZC2JC48 XESP1038
0.055

Operation, dimensions

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

Heads ZC2JE83, JE84, J85 with body ZC2J•4

Unactuated		$1^{\text {st }}$ step		$\mathbf{2 d}^{\text {nd }}$ step	
	\downarrow			\%	(3)5

Heads ZC2JE04 with body ZC2J•4

Heads ZC2JE06, JE07 with body ZC2J•4

Dimensions

Plug-in bodies

ZC2JD1, JD2, JD4

(1) Incorporated cable gland
\varnothing : Fixing from the rear by 2 M6 screws
Fixing from the front via 2 holes $\varnothing 5.5$ (remove front part of switch for access)

Dimensions (continued)

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body
Adaptable sub-assemblies

Rotary heads (ZC2JE01 to JE07) with operating lever ZC2JY11, JY12, JY13

ZC2JY31

ZC2JY91

Rotary heads (ZC2JE09) with operating lever ZC2JY61

Multi-directional heads ZC2JE70

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body, adaptable sub-assemblies for low temperature applications $\left(-40^{\circ} \mathrm{C}\right)$

ZC2JD•6

Bodies with contacts for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies				
1 step	Single-pole 1 CO snap action (XCK Z01)		ZC2JC16	0.355
	Double-pole 2 CO simultaneous, snap action (XES P1021)		ZC2JC26	0.355
2 step	$\begin{aligned} & \text { Double-pole } 2 \text { CO } \\ & \text { staggered, } \\ & \text { snap action } \\ & \text { (XES P1031) } \end{aligned}$		ZC2JC46	0.355
Plug-in bodies				
1 step	Single-pole CO snap action		ZC2JD16	0.380
	Double-pole 2 CO simultaneous, snap action		ZC2JD26	0.380
2 step	Double-pole 2 CO staggered, snap action		ZC2JD46	0.380

Plunger heads				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation on end				
End plunger metal	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE616	0.195
	ZC2J46	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE816	0.195
Side plunger metal	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \\ & \hline \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE636	0.240
	ZC2J46	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE836	0.240

For actuation by $30^{\circ} \mathrm{cam}$				
End ball bearing plunger	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	0.1 m/s	ZC2JE666	0.205
End roller plunger steel	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE626	0.200
	ZC2J•46	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE826	0.200
Side plunger with horizontal roller steel	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE646	0.245
	ZC2J•46	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE846	0.245
Side plunger with vertical roller steel	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE656	0.245
	ZC2J•46	0.6 m/s	ZC2JE856	0.245

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body, adaptable sub-assemblies for low
temperature applications $\left(-40^{\circ} \mathrm{C}\right)$

ZC2JE0•6

ZC2JE706

Rotary heads (without operating lever)				
Type	Compatible bodies	Maximum actuation speed	Reference	Weight kg
Spring return				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE016	0.210
	ZC2J•46	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE046	0.210
Actuation from left	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE026	0.210
	ZC2J•46	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE066	0.210
Actuation from right	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE036	0.210
	ZC2J•46	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE076	0.210
Actuation from left OR right (see page 60)	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE056	0.210
Stay put (see page 60)				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE096	0.210

Multi-directional head (with operator)				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation by any moving part		$1 \mathrm{~m} / \mathrm{s}$ in any direction	ZC2JE706	0.190
"Cat's whisker"	ZC2Je16			
ZC2Je26				

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed or plug-in body, adaptable sub-assemblies for low temperature applications $\left(-40^{\circ} \mathrm{C}\right)$

ZC2JY51

ZC2JY71

ZC2JY61

XCKZ01

XESP10•1

Operating levers for rotary heads			
Description		Reference	Weight kg
For actuation by 30° cam			
Roller lever (1)	Thermoplastic	ZC2JY11	0.030
	Steel	ZC2JY13	0.040

Variable length	Thermoplastic	ZC2JY31	0.045
roller lever (1)			

roller lever (1)

Spring lever (1)	ZC2JY81	0.040

Spring-rod lever (1)	ZC2JY91	0.040

For actuation by specific cam (only for operation with head ZC2 JE096, see page 60)
Forked arm with rollers 1 track \quad ZC2JY71 0.055
thermoplastic
(1)
$\left.\begin{array}{lllll}\hline \text { Contact blocks } & & \text { Sor body } & & \text { Reference }\end{array} \begin{array}{c}\text { Weight } \\ \text { Type of contact }\end{array}\right)$

(1) Adjustable throughout 360°
Other versions Other operating levers for rotary heads. Please consult our Customer Care Centre.

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed body, adaptable sub-assemblies for high
temperature applications $\left(+120^{\circ} \mathrm{C}\right)$

Bodies with contacts for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies				
1 step	Single-pole 1 CO snap action (XCK Z015)		ZC2JC15	0.355
	Double-pole 2 CO simultaneous, snap action (XES P10215)		ZC2JC25	0.355
2 step	Double-pole 2 CO staggered, snap action (XES P10315)		ZC2JC45	0.355
Plunger heads				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation on end				
End plunger metal	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE615	0.195
	ZC2JC45	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE815	0.195
Side plunger metal	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE635	0.240
	ZC2JC45	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE835	0.240
For actuation by 30° cam				
End ball bearing plunger	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	0.1 m/s	ZC2JE665	0.205
End roller plunger steel	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE625	0.200
	ZC2JC45	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE825	0.200
Side plunger with horizontal roller steel	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE645	0.245
	ZC2JC45	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE845	0.245
Side plunger with vertical roller steel	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE655	0.245
	ZC2JC45	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE855	0.245

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed body, adaptable sub-assemblies for high
temperature applications $\left(+120^{\circ} \mathrm{C}\right)$

Rotary heads (without operating lever) Type Compatible bodies	Maximum actuation speed	Reference Actuation from left AND right ZC2JC15 ZC2JC25	$1.5 \mathrm{~m} / \mathrm{s}$	

Limit switches

OsiSense XC Special
For very severe applications, type XC2J
Fixed body, adaptable sub-assemblies for high
temperature applications $\left(+120^{\circ} \mathrm{C}\right)$

ZC2JY51

ZC2JY815

zC2JY715

XCKZ015

Operating levers for rotary heads			
Description		Reference	Weight
For actuation by $30^{\circ} \mathrm{cam}$			
Roller lever (1)	Thermoplastic	ZC2JY115	0.030
	Steel	ZC2JY13	0.040
	Steel, ball bearing mounted	ZC2JY12	0.040
Offset roller lever (1)	Thermoplastic	ZC2JY215	0.035

Variable length roller lever (1)	Thermoplastic	ZC2JY315	0.035
Variable length offset roller lever (1)	Thermoplastic	ZC2JY415	0.040
For actuation by any moving part Rigid rod lever Steel $\square ~$ $\mathrm{~mm}, \mathrm{~L}=125 \mathrm{~mm} \mathrm{(1)}$	ZC2JY51	0.035	
Spring lever (1)	ZC2JY815	0.040	
Spring-rod lever (1)	ZC2JY915	0.040	

For actuation by specific cam (only for operation with head ZC2JE095, see page 60)

Forked arm with rollers thermoplastic (1)	1 track	ZC2JY715	0.055
	2 track	ZC2JY615	0.055

Contact blocks				
Type of contact	Scheme	For body	Reference	Weight kg
Single-pole 1 CO snap action		ZC2JC15	XCKZ015	0.050
Double-pole 2 CO simultaneous, snap action		ZC2JC25	XESP10215	0.045
Double-pole 2 CO staggered, snap action		ZC2JC45	XESP10315	0.045

(1) Adjustable throughout 360°
Other versions Other operating levers for rotary heads.

Presentation

Limit switches

OsiSense XC Special
For material handling applications, type XC1AC

- XC1AC

with slow break contacts
\square With head for linear movement (plunger)

Page 28

Page 28

Limit switches

OsiSense XC Special
For material handling applications, type XC1AC

References, characteristics

Limit switches

OsiSense XC Special
For material handling applications, type XC1AC Complete switches with slow break contacts

Type of head	\| Plunger					
Type of operator	End plunger	End ball bearing plunger	Roller lever plunger	Offset roller lever plunger	Reinforced roller lever plunger	Needle bearing mounted roller lever plunger
References of complete switches						
Single-pole CO slow break ZC1AZ11	XC1AC111	XC1AC115	XC1AC116	XC1AC118	XC1AC117 $\begin{array}{\|cc} 1.1 .6 & 11.5 \\ \hline 13.14 & 6.2 \\ \hline 10 \end{array}$	XC1AC119
2-pole NC + NO break before make, slow break ZC1AZ12	XC1AC121 ${ }_{\substack{11-12 \\ 13-14}}^{6.8 \mathrm{~mm}}$	XC1AC125 $\left.\right\|_{\substack{11-12 \\ 13.14}} ^{6.8 \mathrm{~mm}}$	XC1AC126 ${ }_{\substack{1112 \\ 13-14}}^{\substack{711.5 \\ \hline}}$	XC1AC128	XC1AC127 ${ }_{\substack{11.12 \\ 13.12}}^{\frac{5.211 .5}{6.8 \mathrm{~mm}}}$	XC1AC129 $\underbrace{\frac{5.211 .5}{6.8} \mathrm{~mm}}_{\substack{11-12 \\ 13-14}}$
2-pole NO + NC make before break ZC1AZ13	XC1AC131 $\begin{array}{cc} 11.12 \\ { }_{3}^{13.14} \underbrace{}_{3.5} & 4.8 \\ \hline \end{array}$	XC1AC135	XC1AC136 ${ }_{13-14}^{11-12} \frac{710.5}{4.5} \mathrm{~mm}$	XC1AC138 ${ }_{\substack{113.12 \\ 13.5}}^{710.5}$	XC1AC137 ${ }_{\substack{11-12 \\ 13-14}}^{\substack{6.5 \\ 4.4 \\ m m}}$	XC1AC139
2-pole NC + NC simultaneous, slow break ZC1AZ14 		XC1AC145	XC1AC146	XC1AC148	XC1AC147	XC1AC149
2-pole NO + NO simultaneous, slow break ZC1AZ15	XC1AC151 $\int_{123.24}^{13.14} \underset{\mathrm{~mm}}{5.69}$	XC1AC155	XC1AC156 ${ }_{23-24}^{13-14} \underset{m m}{7.211 .5}$	XC1AC158 ${ }_{23-24}^{13-14} \underset{\mathrm{~mm}}{7.211 .5}$	XC1AC157	XC1AC159 ${ }_{23-24}^{13.14} \begin{array}{r} 711.5 \\ \mathrm{~mm} \\ \hdashline \end{array}$
2-pole NC + NC staggered, slow break ZC1AZ16	XC1AC161	XC1AC165	XC1AC166 $\begin{array}{ccc} & 4.5 & 12 \\ { }_{\substack{11 \\ 21-22}} & \frac{4.2}{\frac{1}{2}} & \mathrm{~mm}\end{array}$	XC1AC168 	XC1AC167	XC1AC169
2-pole NO + NO staggered, slow break ZC1AZ17 $\begin{array}{c\|c} \infty & \underset{\sim}{\sim} \\ \underset{\sim}{*} & \underset{\sim}{*} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \text { XC1AC171 } \\ & \begin{array}{l} 4.88 .5 \\ { }_{23-24}^{23} \begin{array}{r} 4 \\ 6 m \end{array} \end{array} \end{aligned}$	XC1AC175	XC1AC176	XC1AC178 ${ }_{23.24}^{\frac{13.14}{5.8}{ }_{2 .}^{5} \mathrm{~mm}}$	XC1AC177 ${ }_{\substack{133-14}}^{\frac{6}{=}{ }_{7.5}^{12} \mathrm{~mm}}$	XC1AC179
Weight (kg)	0.530	0.530	0.595	0.595	0.870	0.870
Contact operation \square closed \square open						
Complementary characteristics						
Switch actuation	On end	By $30^{\circ} \mathrm{cam}$				
Type of actuation						
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$ (direction A$), 0.5 \mathrm{~m} / \mathrm{s}$ (direction B) (1)				
Cable entry	3 tapped entries for $\mathrm{n}^{\circ} 13$ (DIN Pg 13.5) cable gland, clamping capacity 9 to 12 mm (2 entries fitted with blanking plug)					
Connection	Screw terminals. Clamping capacity: $\mathrm{min} .1 \times 0.5 \mathrm{~mm}^{2}$, max. $1 \times 2.5 \mathrm{~mm}^{2}$					

(1) For a 45° cam the maximum actuation speed becomes $0.5 \mathrm{~m} / \mathrm{s}$ and for a $15^{\circ} \mathrm{cam}, 1 \mathrm{~m} / \mathrm{s}$.

Dimensions

Limit switches

OsiSense XC Special
For material handling applications, type XC1AC
Complete switches with slow break contacts

XC1AC1•5
XC1AC1•6

XC1AC1•8
XC1AC1•7, XC1AC1•9

[^4]\varnothing : 2 elongated holes $\varnothing 6.5 \times 10$.

Limit switches

OsiSense XC Special
For material handling applications, type XC1AC
Replacement parts

ZC1AC001

ZC1AC006

ZC1AC007
ZC1AC009

ZC1AC008

ZC1AZ1•
$\left.\begin{array}{lllll}\hline \text { Plunger heads } \\ \text { Type of operator } \\ \text { Maximum } \\ \text { actuation } \\ \text { speed }\end{array}\right)$

Contact blocks			
Type of contact	Scheme	Reference	Weight kg
CO, single-pole	$\begin{array}{l\|l\|} F & \stackrel{m}{7} \\ \sim & \stackrel{\ni}{\sigma} \end{array}$	ZC1AZ11	0.040
NC + NO break before make		ZC1AZ12	0.045
NO + NC make before break		ZC1AZ13	0.040
NC + NC simultaneous	$\left.\begin{array}{l\|l\|} \sim & \Sigma \\ \sim & \sim \\ \sim & N \end{array} \right\rvert\,$	ZC1AZ14	0.045
NO + NO simultaneous		ZC1AZ15	0.045
NC + NC staggered		ZC1AZ16	0.040
NO + NO staggered	$\begin{array}{c\|c} \stackrel{m}{\sim} \mid & \underset{\sim}{\sim} \\ \underset{\sim}{*} \mid \\ \underset{\sim}{*} \end{array}$	ZC1AZ17	0.040

Adaptation plate

Description	Reference	Weight kg
Mounting plate (For replacing an old version type by an XC1AC limit switch)	ZC1AZ8	3.380

Dimensions

Limit switches

OsiSense XC Special
For material handling applications, type XC1AC Replacement parts

ZC1AC008

Presentation

Limit switches

OsiSense XC Special
For hoisting and material handling applications, type XCR

- XCR

\square With head for rotary movement operators, spring return to off position
1 contact actuation position per direction

Page 36

- With head for rotary movement operators, stay put

1 contact actuation position per direction

Page 36

Limit switches

OsiSense XC Special
For hoisting and material handling applications, types XCKMR and XCKVR
For conveyor belt shift monitoring applications, type XCRT

- XCKMR (metal)

Page 42

- With head for rotary movement operators, stay put

4 mechanical actuation positions of 4 contacts From 2 to 5 electrical positions depending on model

Page 42
\square With head for rotary movement operators, spring return to off position
2 contact actuation positions per direction
1 contact actuated at 10°, other contact at 18°

Page 38

General characteristics

Limit switches

OsiSense XC Special
For hoisting and material handling applications, types XCR, XCKMR and XCKVR
For conveyor belt shift monitoring applications, type XCRT

General characteristics (continued)

Limit switches

OsiSense XC Special

For hoisting and material handling applications, types XCR, XCKMR and XCKVR
For conveyor belt shift monitoring applications, type XCRT

Contact block characteristics (continued)
Electrical durability

- Conforming to EN/IEC 60947-5-1 Appendix C
- Utilisation categories AC-15 and DC-13
- Maximum operating rate: 3600 operating cycles/hour
- Load factor: 0.5

For XE2SP2151 on ~ or - -- NC and NO contacts simultaneously loaded to the values shown with reverse polarity.

References, characteristics

Limit switches

OsiSense XC Special
For hoisting and material handling applications, type XCR Complete switches with 1 cable entry
Type of head
Maximum displacement

Complementary characteristics

[^5]page 40

Limit switches

OsiSense XC Special
For hoisting and material handling applications, type XCR

Separate components				
Description	For switches	Type	Reference	Weight kg
$\mathrm{Rod}, \square 6 \mathrm{~mm}$	XCRA XCRB XCRE XCRF	$\mathrm{L}=200 \mathrm{~mm}$	XCRZ03	0.020
	XCRF	$\mathrm{L}=300 \mathrm{~mm}$	XCRZ04	0.030

Roller lever thermoplastic roller	XCRA XCRB	-	XCRZ02	0.050
Large roller lever thermoplastic roller	XCRA	XCRB	-	XCRZ05

Quick fixing/ release bracket	XCRA, XCRB XCRE, XCRF	-	XCRZ09	0.520
Contact block (2 contacts) with mounting plate	XCRA, XCRB XCRE, XCRF	2-pole NC + NO snap action	XCRZ12	0.135
		2-pole NC + NO break before make, snap action	XCRZ15	0.135
Description	Application	Sold in lots of	Unit reference DE9RP13520	Weight kg
Adaptor	Pg 13.5 to ISO M20 $\times 1.5$	5		0.032

References, characteristics

Limit switches

OsiSense XC Special
For conveyor belt shift monitoring applications, type XCRT Complete switches with 1 cable entry

Type of switch	Standard	\|For corrosive atmospheres	
Features	Zinc alloy enclosure Colour: industrial blue Zinc plated steel lever, spring return to off position Cam angles: 10° and 18° Maximum displacement: 90°	Zinc alloy enclosure Colour: blue Stainless steel lever, spring return to off position Cam angles: 10° and 18° Maximum displacement: 90°	Glass reinforced polyester enclosure Colour: grey Stainless steel lever, spring return to off position Cam angles: 10° and 18° Maximum displacement: 70°
References of complete switches			
2 single-pole CO snap action $1^{\text {st }}$ contact	XCRT115		
Weight (kg)	1.170	1.170	1.520
Contact operation	\squareclosed \square open		

Complementary characteristics

Lever maximum actuation speed	$1.5 \mathrm{~m} / \mathrm{s}$			
Belt maximum speed	$4 \mathrm{~m} / \mathrm{s}$			
Machnical durability	0.3 million operating cycles			
Minimum tripping torque	$1.7 \mathrm{~N} . \mathrm{m}$			
Cable entry	1 entry tapped for $\mathrm{n}^{\circ} 13$ cable gland conforming to NF C 68-300 (DIN Pg 13.5) Clamping capacity 9 to 12 mm			
Switch operation Fault signalling				
Normal position		Stopping of the conveyor belt	Maximum rotation	M
:---				

Dimensions

page 41

Limit switches

OsiSense XC Special
For conveyor belt shift monitoring applications, type XCRT

Separate components				
Description	Type	For switches	Reference	Weight $\mathbf{k g}$
Roller with lever	Zinc plated steel	XCRT115 XCRT215	XCRZ901	0.230

Stainless steel	XCRT115 XCRT215	XCRZ902	0.230

XCRT215

XCRT315	XCRZ903	0.230

XCRZ09

XCRZ42

Quick fixing/release bracket	-	XCRT115 XCRT215	XCRZ09	0.520

Contact block (2 contacts) with mounting plate	Single-pole CO snap action	XCRT•15	XCRZ42	0.135

mounting plate

Description	Application	Sold in lots of	Unit reference	Weight $\mathbf{k g}$
Adaptor	Pg 13.5 to	5	DE9RP13520	0.032
	ISO M20 $\times 1.5$			

Limit switches
OsiSense XC Special
For hoisting and material handling applications, type XCR

XCRA11, B11, A51, B51

XCRA15, B15, A55, B55

XCRA12, B12, A52, B52

XCRE18, E58, F17, F57

(1) 1 tapped entry for $n^{\circ} 13$ cable gland.
(2) Rod length: 200 mm .
(3) Rod + roller length: 160 mm .
(4) Rod length: 300 mm for XCRF17 and F57, 200 mm for XCRE18 and E58.

Supplementary fixing using 2 adjustable lugs (included with switch)
Quick fixing/release bracket XCRZ09
Horizontally positioned
Vertically positioned

[^6]
Limit switches

OsiSense XC Special
For conveyor belt shift monitoring applications, type XCRT

XCRT115, T215

XCRT315

(1) 200 max., 83 min.
(2) $90^{\circ} \mathrm{max}$
(2) 90° max.
(3) 1 tapped entry for $n^{\circ} 13$ cable gland.
(4) 70° max
(5) 1 plain entry for $n^{\circ} 13$ cable gland.

Supplementary fixing using 2 adjustable lugs (included with XCRT115 and T215)
Vertically positioned

[^7]| Characteristics: | References: | Operation: |
| :--- | :--- | :--- |
| pages 34 and 38 | page 38 | page 38 |

References, characteristics

Limit switches

OsiSense XC Special
For hoisting and material handling applications, type XCKMR and XCKVR
Complete switches with 3 cable entries

Dimensions

Limit switches

OsiSense XC Special
For hoisting and material handling applications, type XCKMR and XCKVR
Complete switches with 3 cable entries

(1) XCKMR••••H29 = 3 tapped entries ISO M2O x 1.5.

XCKMR $\bullet \bullet \bullet=3$ tapped entries for Pg 13.5 cable gland.
(2) 2 centring holes $\varnothing 3.9 \pm 0.2$, for cover fixing holes alignment.
\varnothing : 2 elongated holes 6.2×6.5, inclined at $26^{\circ} 30^{\prime}$ to the vertical axis, for M5 screws.
Plastic limit switches
XCKVR24SR1H29,
XCKVR44D1H29 and
XCKVR54D1H29

Limit switches

OsiSense XC Special
For hoisting and material handling applications,
type XCKMR and XCKVR
Complete switches with 3 cable entries

Operation
Limit switches XCK॰R24SR1H29: "By pass"

180°

$$
\begin{array}{l|l}
\underbrace{14}_{\text {Contact }(\mathbb{A})} & \frac{13}{22}
\end{array} \underbrace{\frac{14}{22}}_{\text {Contact (B) }}
$$

90°

0°

90°

180°

(1) Triangle symbol marked on top of head.

Or: direction of rotation.
Limit switches XCK॰R44DっH29: "Single speed"

180°

90°

180°

(1) Triangle symbol marked on top of head.

[^8]
Limit switches

OsiSense XC Special
For hoisting and material handling applications,
type XCKMR and XCKVR
Complete switches with 3 cable entries

Operation (continued)
Limit switches XCK•R54D•••ง: "Double speed"

(1) Triangle symbol marked on top of head
or
direction of rotation.

References, dimensions

Miniature snap switches

OsiSense XC Special
Subminiature design, DIN 41635 B format, sealed Sub-subminiature design, DIN 41635 D format

早
-1
0
6,4

XEP5P1W2

XEP5P1W2Z55B

(1) In order to avoid damage to the fixing spigots, removal of the lever from complete products is not recommended.
(2) Levers only for mounting on basic (plunger) snap switches (XEP4E1W7 and XEP4E1FD).
(3) Switches sold in lots of 5 .
(4) A, B, Z : lever fixing positions.

Characteristics

Miniature snap switches

OsiSense XC Special
Subminiature design, DIN 41635 B format, sealed Sub-subminiature design, DIN 41635 D format

(1) Miniature snap switches fitted with a lever are supplied with the lever fixed in position A (see page 46). For basic (plunger) snap switches, it is possible to fix the lever in position A or B, depending on the required tripping conditions (see page 46).
(2) Position of the operator in relation to the switch fixings (fixing hole centre line) at the instant the switch contact changes state.

References, dimensions

Miniature snap switches
OsiSense XC Special
Miniature design, DIN 41635 A format

References

| Type of operator | | | |
| :--- | :--- | :--- | :--- | :--- |

ZEP3L529

ZEP3L524

[^9]
Miniature snap switches

OsiSense XC Special
 Miniature design, DIN 41635 A format

(1) Miniature snap switches fitted with a lever are supplied with the lever fixed in position B (see page 48). For basic (plunger) snap switches, it is possible to fix the lever in position A, B or C, depending on the required tripping conditions (see page 48).
(2) Position of the operator in relation to the switch fixings (fixing hole centre line) at the instant the switch contact changes state.

References,	Miniature snap switches
dimensions	OsiSense XC Special Sealed design Pre-cabled

Type of head		\| Plunger (fixing by the body)	
Type of operator		Head with flat plunger	Head with domed encased plunger
References			
	Single-pole CO snap action Wiring: 1 Black 2 Brown 4 Blue	XC010L2	XC011L2
Weight (kg)		0.145	0.150
Dimensions			
XC010L2			

XC011L2

Characteristics

Miniature snap switches

OsiSense XC Special
Sealed design

Pre-cabled

Switch type	XC010•	XC011•
Environment characteristics		
Switch actuation	On end, flat plunger (1)	On end, domed plunger (1)
Product certifications	¢ $¢$, IEC 60947-5-1	
Degree of protection	IP 66	
Operating temperature	$0 . . .+85^{\circ} \mathrm{C}$	
Materials Internal housing	Metal	
Casing	Nitrile	
Fixing support	Steel, zinc passivated	
Contact	Ag	
Mechanical characteristics		
Maximum tripping force	5.3 N	
Minimum release force	1.5 N	
Maximum permissible end of travel force	30 N	
Tripping point (TP) (2)	$11.4{ }^{ \pm 0.4} \mathrm{~mm}$	$17.4^{ \pm 0.5} \mathrm{~mm}$
Maximum differential travel	0.2 mm	
Minimum overtravel	0.2 mm	
Inter-contact distance	0.5 mm	
Mechanical durability	2 million operating cycles	
Electrical characteristics		
Operational current	1 A on $24 \mathrm{~V}(50 / 60 \mathrm{~Hz})$	
Thermal current/insulation voltage	$12 \mathrm{~A} / 60 \mathrm{~V}$	
Connection	A05 VVF cable, $3 \times 0.75 \mathrm{~mm}^{2}$, length 2 metres, external diameter $\leqslant 7.6 \mathrm{~mm}$	
Electrical durability	AC-15: 0.5 million operating cycles	

[^10]Presentation, terminology, characteristics, mounting

Miniature snap switches
OsiSense XC
Miniature design
General

Terminology

Mechanical characteristics

T1: bounce time
T: changeover time

Mounting

Electromechanical detection

■ OsiSense XC miniature snap switches, featuring electromechanical technology, assure the following functions:
\square detection of presence or absence,
\square detection of position.
Actuation of the operator (plunger or lever) on the miniature snap switch causes the electrical contac to change state. This information can then be processed by a PLC controlling the installation. OsiSense XC miniature snap switches can be used both in industrial applications and the building sector.

Features

■ OsiSense XC miniature snap switches incorporate a CO snap action, single break, contact. They are characterised by:

- high electrical ratings for their very small size,
- short tripping travel,
- low tripping force,
\square high repeat accuracy on the tripping points,
Iong service life.

Forces

- Maximum tripping force:
maximum force which must be applied to the operator to move it from the rest (unactuated) position to the trip position (tripping point).
- Minimum release force:
value to which the force on the operator must be reduced to allow the snap action mechanism to return to its rest (unactuated) position.
- Maximum permissible end of travel force:
maximum force that can be applied to the operator at the end of its travel without damaging the switch.

Position/Travel

1 Tripping point: position of the operator in relation to the switch fixings (fixing hole centre line) at the instant the switch contact changes state.
A Differential travel: distance between the tripping point and the position at which the snap action mechanism returns to its initial state on release of the operator.
2 Overtravel limit: position of the operator when an extreme force has moved it to the effective end of its available travel.
B Overtravel: distance between the tripping point and the overtravel limit.
The reference point for the figures given for forces and travel is a point F, which is situated on the plunger in the case of a basic switch or at 3 mm from the end of the plain lever in the case of a lever operated switch.

Changeover time

- This is the time taken by the moving contact when moving from one fixed contact to another until it becomes fully stable (contact bounce included).
- This time is related to the inter-contact distance, the mechanical characteristics of the snap action mechanism and the mass of the moving element. However, due to the snap action mechanisms used, the time is largely independent to the speed of operation. It is normally less than 20 milliseconds (including bounce times of less than 5 ms).

Operating speed and maximum usable operating rate

- Our miniature snap switches are suitable for a wide range of operating speeds: generally, from $1 \mathrm{~mm} / \mathrm{mn}$ to $1 \mathrm{~m} / \mathrm{s}$.
- The maximum usable operating rate on a light electrical load may be as high as 10 operations/second.

Mounting and operation

- To conform to the leakage paths and air gaps in standards EEC 24 - EN/IEC 61058 EN/IEC 60947
\square an insulation pad must be inserted between the snap switch and the fixing surface if the latter is metal
- manual operation of a metal actuator must only be carried out with the aid of an intermediate actuator made of an insulating material.
- The installer must ensure adequate protection against direct contact with the output terminals.

Actuation method

- Direct operation
the plunger should preferably be actuated along its axis. However, the majority of our miniature snap switches will accept skewed operation provided the angle of actuation is not more than 45°
The travel of the actuator must not be limited to only reaching the tripping point. The actuator must always be operated in such a manner so that the plunger reaches a point at least 0.5 times the stated overtravel value of the switch. Steps must also be taken to ensure that it does not reach its end of travel nor exceed the maximum permissible end of travel force.

Mounting, characteristics
 (continued)

Miniature snap switches

OsiSense XC
Miniature design
General

Characteristics (continued)

Actuation method (continued)

■ Lever operators
\square when actuation is by a roller lever, force should preferably be applied in the direction shown in the diagrams opposite.
\square where the movements involved are fast, the ramp should be so designed as to ensure that the operator is not subjected to any violent impact or abrupt release.

Fixing - Tightening torque

■ The tightening torque of the fixing screws must conform to the following values:

$\boldsymbol{\varnothing}$ of fixing screw		$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{3}$	$\mathbf{3 . 5}$	$\mathbf{4}$
Tightening torque (cm.N)	Maximum	25	35	60	100	150
	Minimum	15	25	40	60	100

Resistance to mechanical shock and vibration

- Resistance to shock and vibration depends on the mass of the moving parts and on the forces holding the contacts together.
- In general, for a miniature snap switch without accessory:
vibration > $10 \mathrm{gn}, 10$ to 500 Hz
- shock > $50 \mathrm{gn}, 11 \mathrm{~ms} 1 / 2$ sine wave.

Operating curves

■ These indicate the electrical life of the miniature snap switches under standard conditions $\left(20^{\circ} \mathrm{C}\right.$, 1 cycle/ 2 seconds), by showing the number of switching operations which can be performed with given types of load. For sealed snap switches, the operating rate is 1 cycle/6s

Insulation resistance

■ The insulation resistance of the miniature snap switches is generally greater than $50,000 \mathrm{M} \Omega$, measured at 500 V DC

Dielectric strength

- The dielectric strength of our miniature snap switches is generally superior to:
- 1500 Volts between live parts and earth,
- 1000 Volts between contacts,

ㅁ 600 Volts between contacts for switches with an inter-contact distance less than 0.3 mm .

Presentation, terminology

Limit switches

OsiSense XC
General

Presentation

Electromechanical detection

Limit switches are used in all automated installations and also in a wide variety of applications, due to the numerous advantages inherent to their technology.
They transmit data to the logic processing system regarding:

- presence/absence,
- passing,
- positioning,
end of travel

Simplicity of installation, advantages

- From an electrical viewpoint

\square galvanic separation of circuits,

- models suitable for low power switching combined with good electrical durability,
- very good short-circuit withstand in coordination with appropriate fuses,
- total immunity to electromagnetic interference,
high rated operational voltage.
- From a mechanical viewpoint
- NC contacts with positive opening operation,
- high resistance to the different ambient conditions encountered in industry (standard tests and specific tests under laboratory conditions),
a high repeat accuracy, up to 0.01 mm on the tripping points.

Detection movements

- Linear movement (plunger)

Rotary movement (lever)

- Multi-directional movement

Rated value of a quantity	This replaces the term "nominal value". It is the fixed value for a specific function.
Utilisation categories:	AC-15 replaces AC-11: control of an electromagnet on AC, test $10 \mathrm{le} / \mathrm{le}$. AC-12: control of a resistive load on AC or static load isolated by opto-coupler. DC-13 replaces DC-11: control of an electromagnet on DC, test le/le.
Positive opening travel	Minimum travel from the initial movement of contact actuator to the position required to accomplish positive opening operation.
Positive opening force	The force required on the contact actuator to accomplish positive opening operation.
Switching capacity	lthe is no longer a rated value but a conventional current used for heating tests. Example: for category A300 the corresponding operational current, le maximum, is $6 \mathrm{~A}-120 \mathrm{~V}$ or $3 \mathrm{~A}-240 \mathrm{~V}$, the equivalent Ithe being 10 A .
Positive opening ope	Alimit switch complies to this specification when all the closed contact elements of the switch can be changed, with certainty, to the open position (no flexible link between the moving contacts and the operator of the switch, to which an actuating force is applied). All limit switches incorporating either a slow break contact block or a snap action NC + NO (form Zb), NC + NO + NO, $\mathrm{NC}+\mathrm{NC}+\mathrm{NO}, \mathrm{NC}+\mathrm{NC}+\mathrm{NO}+\mathrm{NO}$ contact block are positive opening operation, in complete conformity with standard IEC 60947-5-1 Appendix K.

Limit switches

OsiSense XC

General

Contact blocks

		Range of use
Standard contacts	XE2SP2151, P3151	
	XE2NP•••••	
Continuous service (frequent switching)	Contacts of XCMD XE3•P•••••	
Gold flashed contacts on resistive load	Occasional service Infrequent switching, $\leqslant 1$ operating cycle/ day, and/or corrosive atmosphere	(1)

[^11]
Snap action contacts

■ Snap action contacts are characterised by different tripping and reset points (differential travel)

- The displacement speed of the moving contacts is not related to the speed of the operator.
- This feature ensures satisfactory electrical performance in applications involving low speed actuators.

Slow break contacts

- Slow break contacts are characterised by identical tripping and resetting points.
- The displacement speed of the moving contacts is equal, or proportional, to the speed of the operator (which must not be less than $0.1 \mathrm{~m} / \mathrm{s}=6 \mathrm{~m} /$ minute).
The opening distance is also dependent on the distance travelled by the operator.

Electrical durability for normal loads

- Normally, for inductive loads, the current value is less than 0.1 A (sealed), i.e. values of 3 to 40 VA sealed and 30 to 1000 VA inrush, depending on the voltage.
For this type of application the electrical durability will exceed 10 million operating cycles.
Application example: XCKJ161 + LC1D12•••• (7 VA sealed, 70 VA inrush).
Electrical durability = 10 million operating cycles.

Switching capacity

1 Normal industrial PLC input type 1 (PLC: industrial programmable logic controllers)
2 Normal industrial PLC input type 2
3 Switching capacity conforming to IEC 60947-5-5, utilisation category AC-15, DC-13

A300	240 V	3 A	B300	240 V
Q300	250 V	0.27 A	R	

4 Switching capacity conforming to IEC 60947-5-1, utilisation category AC-15, DC-13
A300 $120 \mathrm{~V} 6 \mathrm{~A} \quad \mathrm{~B} 300 \quad 120 \mathrm{~V} 3 \mathrm{~A}$
Q300 125V 0.55A R300 $125 \mathrm{~V} \quad 0.27 \mathrm{~A}$

Electrical durability for small loads

- The use of limit switches with programmable controllers is becoming more common.
- With small loads, limit switches offer the following levels of reliability:
- failure rate of less than 1 for 100 million operating cycles using snap action contacts (contacts XE2SP),
- failure rate of less than 1 for 20 million operating cycles using slow break contacts (contacts XE॰NP and XE3SP).
\square failure rate of less than 1 for 5 million operating cycles using contacts XCMD.

Contact blocks (continued)

Functional diagrams of snap action contacts

- Example: NC + NO

A - Maximum travel of operator in millimetres or degrees.
B - Tripping travel of contact.
C - Resetting travel of contact.
D - Differential travel $=B-C$.
P - Point from which positive opening is assured.

- Linear movement (plunger)

1 - Resetting point of contact.
2 - Tripping point of contact.
A - Maximum travel of operator in millimetres.
B - Tripping travel of contact.
C - Resetting travel of contact.
D - Differential travel $=B-C$.
P - Point from which positive opening is assured.

- Rotary movement (lever)

1 - Resetting point of contact.
2 - Tripping point of contact.
A - Maximum travel of operator in degrees.
B - Tripping travel of contact.
C - Resetting travel of contact.
D - Differential travel $=B-C$.
P - Point from which positive opening is assured.

Functional diagrams of slow break contacts

■ Example: NC + NO break before make

A - Maximum travel of operator in millimetres or degrees.
B - Tripping and resetting travel of contact 21-22.
C - Tripping and resetting travel of contact 13-14.
P - Point from which positive opening is assured.

- Linear movement (plunger)

1 - Tripping and resetting points of contact 21-22.
2 - Tripping and resetting points of contact 13-14.
A - Maximum travel of operator in millimetres.
B - Tripping and resetting travel of contact 21-22.
C - Tripping and resetting travel of contact 13-14.
P - Positive opening point.

- Rotary movement (lever)

1-Tripping and resetting points of contact 21-22.
2 - Tripping and resetting points of contact 13-14.
A - Maximum travel of operator in degrees.
B - Tripping and resetting travel of contact 21-22.
C - Tripping and resetting travel of contact 13-14.
P - Positive opening point.

Contact blocks (continued), mounting

Limit switches

OsiSense XC

General

Contact blocks (continued)

XE2•P screw clamp terminal connections

XE3•P screw clamp terminal connections

Mounting

Contact connections

- Tightening torque:
\square minimum tightening torque ensuring the nominal characteristics of the contact: $0.8 \mathrm{~N} . \mathrm{m}$,
\square maximum tightening torque without damage to the terminals: 1.2 N.m for XE2•P, 1 N.m for XE3•P.
- Connecting cable: cable preparation lengths:
- for XE2•P, $L=22 \mathrm{~mm}$,
\square for XE2•P3eゃ๑, $L=45 \mathrm{~mm}$,

\square for $\mathbf{X E 3} \bullet \mathrm{P}, \mathrm{L}=14 \mathrm{~mm}, \mathrm{~L} 1=11 \mathrm{~mm}$.

Sweep of connecting cable

1 Recommended
2 To be avoided

Position of cable gland

1 Recommended
2 To be avoided

Type of cam

1 Recommended
2 To be avoided

2

Mounting and fixing limit switches by the head

1 Recommended
2 Forbidden

Types XCKD, XCKP and XCKT, XCMD and XCMN

Limit switches

OsiSense XC

General

Tightening torque

■ The minimum torque is that required to ensure correct operation of the switch

- The maximum torque is the value which, if exceeded, will damage the switch

Range	Item	Torque (N.m)	
		Min.	Max.
Compact design XCKD, XCKP, XCKT	Cover	0.8	1.2
	Fixing screw for lever on rotary head	1	1.5
Miniature design XCMD, XCMN	-	-	-
	Fixing screw for lever on rotary head	1	1.5
Compact design XCKN	Cover	0.8	1.2
	Fixing screw for lever on rotary head	1	1.5
Classic design XCKJ	Cover	1	1.5
	Fixing nut for lever on rotary head	1	1.5
Classic design XCKS	Cover	0.8	1.2
	Fixing nut for lever on rotary head	1	1.5
Classic design XCKM, XCKML, XCKL	Cover	0.8	1.2
	Fixing nut for lever on rotary head	1	1.5

Types XCKD, XCKP, XCKT, XCMD

- Adjustable in 3 planes:

All the heads can be adjusted in 15° steps throughout 360°, in relation to the body.

All the levers can be adjusted in 15° steps throughout 360°, in relation to the horizontal axis of the head.

Type XCKJ

- Adjustable throughout 360° in 5° steps, or in 45° steps by reversing the lever or its mounting.

1 Reversed $\alpha=5^{\circ}$
2 Forward $\alpha=45^{\circ}$

Limit switches

OsiSense XC

General

Head ZC2JE05

Head ZCKD05

■ XCKD, XCKP, XCKT and XCMD

Head ZCE05
10.5 mm min.
22 mm min.

A = length of lever +11 mm
ZCKE09: $13<h<18 \mathrm{~mm}$ and $B=12 \mathrm{~mm}$ max.
ZC2JE09: $14<h<24 \mathrm{~mm}$ and $B=6 \mathrm{~mm}$ max.

General

Reminder of the standards
The majority of Schneider Electric products comply to national standards (for example French NF C standards, German DIN standards), European
standards (for example CENELEC) or international standards (for example IICC). These standards rigidly stipulate the characteristic requirements of
the designated products (for example IIC 60947 relating to low voltage switchgear and control gear).
These products, when correctly used, enable the production of control equipment assemblies, machine control equipment or installations
conforming to their own specific standards (for example IEC 60204 for the electrical equipment of industrial machines).

IEC 60947-5-1

Insulation coordination (and dielectric strength)

Terminal connections	- The cabling capacity, mechanical robustness and durability of the terminals, as well as the ability to resist loosening, are verified by standardised tests. - Terminal reference marking conforms to standard IEC 60947-5-1 Appendix M .
Switching capacity	- With maximum electrical load. A single designation (A300 for example) enables indication of the contact block characteristics related to its utilisation category.
Positive opening operation (IEC 60947-5-1 Appendix K)	- For contacts used in safety applications (end of travel, emergency stop device, etc.) the assurance of positive opening is required (see IEC 60204, EN 60204) after each test, the opening of the contact being verified by testing with an impulse voltage (2500 V).
Electrical symbols for contacts	■ Form Za, the 2 contacts (NO + NC) are the same polarity.
Symbol for positive opening	

CENELEC EN 50047

The European standards organisation CENELEC, which has 14 member countries, has defined in this standard the first type of limit switch.

It defines 4 variants of devices (forms A, B, C, E).
Limit switches XCKP, XCKD and XCKT conform to standard EN 50047.

Form A, with roller lever

(1) Minimum value
(2) Maximum value

A: reference axis
P: tripping point
P: tripping point
E: cable entry
Form B, with end plunger (rounded)

Form C, with end roller plunger

Form E, with roller lever for 1 direction of actuation

Reminder of the standards
(continued)

Limit switches

OsiSense XC

General

Reminder of the standards (continued)
CENELEC EN 50041
The European standards organisation CENELEC, which has 14 member countries, has defined in this standard the second type of limit switch.

(1) Minimum value
(2) Maximum value

A: reference axis
B: optional elongated holes Sa: tripping threshold
H: differential travel
P : tripping point
E: cable entry
Form B, with end plunger (rounded)

Form C, with end roller plunger

Form F, with side plunger (rounded)

Form G, with side roller plunger

Technical information
 Protective treatment of equipment according to climatic environment

Depending on the climatic and environmental conditions in which the equipment is placed, Telemecanique Sensors can offer specially adapted products to meet your requirements.

In order to make the correct choice of protective finish, two points should be remembered:

- the prevailing climate of the country is never the only criterion,
- only the atmosphere in the immediate vicinity of the equipment need be considered.

All climates treatment "TC"

This is the standard treatment for Telemecanique Sensors brand equipment and is suitable for the vast majority of applications. It is the equivalent of treatments described as "Klimafest", "Climateproof".
In particular, it meets the requirements specified in the following publications:
■ Publication UTE C 63-100 (method I), successive cycles of humid heat at:
$+40^{\circ} \mathrm{C}$ and 95% relative humidity.

- DIN 50016 - Variations of ambient conditions within a climatic chamber:
$+23^{\circ} \mathrm{C}$ and 83% relative humidity,
$+40^{\circ} \mathrm{C}$ and 92% relative humidity.

It also meets the requirements of the following marine classification societies: BV-LR-GL-DNV-RINA.

Characteristics

■ Steel components are usually treated with zinc. When they have a mechanical function, they may also be painted.

- Insulating materials are selected for their high electrical, dielectric and mechanical characteristics.
■ Metal enclosures have a stoved paint finish, applied over a primary phosphate protective coat, or are galvanised (e.g. some prefabricated busbar trunking components).

Limits for use of "TC" (All climates) treatment
■ "TC" treatment is suitable for the following temperatures and humidity:
Temperature (${ }^{\circ} \mathrm{C}$) Relative humidity (\%)

20	95
40	80
50	50

"TC" treatment is therefore suitable for all latitudes and in particular tropical and equatorial regions where the equipment is mounted in normally ventilated industrial premises. Being sheltered from external climatic conditions, temperature variations are small, the risk of condensation is minimised and the risk of dripping water is virtually non-existent.

Extension of use of "TC" (All climates) treatment

In cases where the humidity around the equipment exceeds the conditions described above, or in equatorial regions if the equipment is mounted outdoors, or if it is placed in a very humid location (laundries, sugar refineries, steam rooms, etc.), "TC" treatment can still be used if the following precautions are taken:
■ The enclosure in which the equipment is mounted must be protected with a "TH" finish (see next page) and must be well ventilated to avoid condensation and dripping water (e.g. enclosure base plate mounted on spacers).

- Components mounted inside the enclosure must have a "TC" finish.
- If the equipment is to be switched off for long periods, a heater must be provided (0.2 to 0.5 kW per square decimetre of enclosure), that switches on automatically when the equipment is turned off. This heater keeps the inside of the enclosure at a temperature slightly higher than the outside surrounding temperature, thereby avoiding any risk of condensation and dripping water (the heat produced by the equipment itself during normal running is sufficient to provide this temperature difference).
■ Special considerations for "Operator dialog" and "Detection" products: for certain pilot devices, the use of "TC" treatment can be extended to outdoor use provided their enclosure is made of light alloys, zinc alloys or plastic material. In this case, it is also essential to ensure that the degree of protection against penetration of liquids and solid objects is suitable for the applications involved.

Technical information

Protective treatment of equipment according to climatic environment

"TH" treatment for hot and humid environments

This treatment is suitable for hot and humid atmospheres where installations are regularly subject to condensation, dripping water and the risk of fungi.

In addition, plastic insulating components are resistant to attacks from insects such as termites and cockroaches. These properties have often led to this treatment being described as "Tropical Finish", but this does not mean that all equipment installed in tropical and equatorial regions must systematically have undergone "TH" treatment. On the other hand, certain operating conditions in temperate climates may well require the use of "TH" treated equipment (see limitations for use of "TC" treatment).

Special characteristics of "TH" treatment

- All insulating components are made of materials which are either resistant to fungi or treated with a fungicide, and which have increased resistance to creepage (Standards IEC 60112, NF C 26-220, DIN 5348).
■ Metal enclosures receive a top-coat of stoved, fungicidal paint, applied over a rust inhibiting undercoat. Components with "TH" treatment may be subject to a surcharge (1). Please consult your Customer Care Centre.

Protective treatment selection guide

Surrounding environment	Duty cycle	Internal heating of enclosure when not in use	Type of climate	Protective treatment	
				of equipment	of enclosure
Indoors					
No dripping water or condensation	Unimportant	Not necessary	Unimportant	"TC"	"TC"
Presence of dripping water or condensation	Frequent switching off for periods of more than 1 day	No	Temperate	"TC"	"TH"
			Equatorial	"TH"	"TH"
		Yes	Unimportant	"TC"	"TH"
	Continuous	Not necessary	Unimportant	"TC"	"TH"
Outdoors (sheltered)					
No dripping water or dew	Unimportant	Not necessary	Temperate	"TC"	"TC"
			Equatorial	"TH"	"TH"
Exposed outdoors or near the sea					
Frequent and regular presence of dripping water or dew	Frequent switching off for periods of more than 1 day	No	Temperate	"TC"	"TH"
			Equatorial	"TH"	"TH"
		Yes	Unimportant	"TC"	"TH"
	Continuous	Not necessary	Unimportant	"TC"	"TH"

These treatments cover, in particular, the applications defined by methods I and II of guide UTE C 63-100.

Special precautions for electronic equipment

Electronic products always meet the requirements of "TC" treatment. A number of them are " TH " treated as standard.

Some electronic products (for example: programmable controllers, flush mountable controllers CCX and flush mountable operator terminals XBT) require the use of an enclosure providing a degree of protection to at least IP 54, as defined by standards IEC 60664 and NF C 20 040, for use in industrial applications or in environmental conditions requiring "TH" treatment.

These electronic products, including flush mountable products, must have a degree of protection to at least IP 20 (provided either by their own enclosure or by their installation method) for restricted access locations where the degree of pollution does not exceed 2 (a test booth not containing machinery or other dust producing activities, for example).

Special treatments

For particularly harsh industrial environments, Telemecanique Sensors is able to offer special protective treatments. Please consult your Customer Care Centre.
(1) A large number of the Telemecanique Sensors brand products are "TH" treated as standard and are, therefore, not subject to a surcharge.

Technical information
 Product standards and certifications

Standardisation

Conformity to standards

Telemecanique Sensors products satisfy, in the majority of cases, national (for example: BS in Great Britain, NF in France, DIN in Germany), European (for example: CENELEC) or international (IEC) standards. These product standards precisely define the performance of the designated products (such as IEC 60947 for low voltage equipment)
When used correctly, as designated by the manufacturer and in accordance with regulations and correct practices, these products will allow users to build equipment, machine systems or installations that conform to their appropriate standards (for example: IEC 60204-1, relating to electrical equipment used on industrial machines).
Telemecanique Sensors is able to provide proof of conformity of its production to the standards it has chosen to comply with, through its quality assurance system.
On request, and depending on the situation, Telemecanique Sensors can provide the following:

- a declaration of conformity,
- a certificate of conformity (ASEFA/LOVAG),
- a homologation certificate or approval, in the countries where this procedure is required or for particular specifications, such as those existing in the merchant navy.

| Code | Certification authority | | Country |
| :--- | :--- | :--- | :--- | :--- |
| | Name | Abbreviation | |
| ANSI | American National Standards Institute | ANSI | USA |
| BS | British Standards Institution | BSI | Great Britain |
| CEI | Comitato Elettrotecnico Italiano | CEI | Italy |
| DIN/VDE | Verband Deutscher Electrotechniker | VDE | Germany |
| EN | Comité Européen de Normalisation Electrotechnique | CENELEC | Europe |
| GOST | Gosudarstvenne Komitet Standartov | GOST | Russia |
| IEC | International Electrotechnical Commission | IEC | Worldwide |
| JIS | Japanese Industrial Standards Committee | JISC | Japan |
| NBN | Institut Belge de Normalisation | IBN | Belgium |
| NEN | Nederlands Normalisatie Institut | NNI | Netherlands |
| NF | Union Technique de l'Electricité | UTE | France |
| SAA | Standards Association of Australia | SAA | Australia |
| UNE | Asociacion Española de Normalizacion y Certificacion | AENOR | Spain |

European EN standards

These are technical specifications established in conjunction with, and with approval of, the relative bodies within the various CENELEC member countries (European Union, European Free Trade Association and many central and eastern European countries having «member» or «affiliated» status). Prepared in accordance with the principle of consensus, the European standards are the result of a weighted majority vote. Such adopted standards are then integrated into the national collection of standards, and contradictory national standards are withdrawn. European standards incorporated within the French collection of standards carry the prefix NF EN. At the 'Union Technique de l'Electricité' (Technical Union of Electricity) (UTE), the French version of a corresponding European standard carries a dual number: European reference (NF EN ...) and classification index (C ...).
Therefore, the standard NF EN 60947-4-1 relating to motor contactors and starters, effectively constitutes the French version of the European standard EN 60947-4-1 and carries the UTE classification C 63-110.
This standard is identical to the British standard BS EN 60947-4-1 or the German standard DIN EN 60947-4-1.
Whenever reasonably practical, European standards reflect the international standards (IEC). With regard to automation system components and distribution equipment, in addition to complying with the requirements of French NF standards, Telemecanique Sensors brand components conform to the standards of all other major industrial countries.

Regulations

European Directives

Opening up of European markets assumes harmonisation of the regulations pertaining to each of the member countries of the European Union.
The purpose of the European Directive is to eliminate obstacles hindering the free circulation of goods within the European Union, and it must be applied in all member countries. Member countries are obliged to transcribe each Directive into their national legislation and to simultaneously withdraw any contradictory regulations. The Directives, in particular those of a technical nature which concern us, only establish the objectives to be achieved, referred to as "essential requirements".
The manufacturer must take all the necessary measures to ensure that his products conform to the requirements of each Directive applicable to his production.
As a general rule, the manufacturer certifies conformity to the essential requirements of the Directive(s) for his product by affixing the (ϵ mark.
The C \in mark is affixed to Telemecanique Sensors brand products concerned, in order to comply with French and European regulations.

Significance of the (\in mark

- The CE mark affixed to a product signifies that the manufacturer certifies that the product conforms to the relevant European Directive(s) which concern it; this condition must be met to allow free distribution and circulation within the countries of the European Union of any product subject to one or more of the E.U. Directives.
- The C€ mark is intended solely for national market control authorities.
- The C \in mark must not be confused with a conformity marking.

Technical information

Product standards and certifications

European Directives (continued)

For electrical equipment, only conformity to standards signifies that the product is suitable for its designated function, and only the guarantee of an established manufacturer can provide a high level of quality assurance.
For Telemecanique Sensors brand products, one or several Directives are likely to be applicable, depending on the product, and in particular:

- the Low Voltage Directive 2006/95/EC: the C \in mark relating to this Directive has been compulsory since $16^{\text {th }}$ January 2007.
- the Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 92/31/EEC and 93/68/EEC: the C \in mark on products covered by this Directive has been compulsory since 1st January 1996.

ASEFA-LOVAG certification

The function of ASEFA (Association des Stations d'Essais Française d'Appareils électriques - Association of French Testing Stations for Low Voltage Industrial Electrical Equipment) is to carry out tests of conformity to standards and to issue certificates of conformity and test reports. ASEFA laboratories are authorised by the French authorisation committee (COFRAC) ASEFA is now a member of the European agreement group LOVAG (Low Voltage Agreement Group). This means that any certificates issued by LOVAG/ASEFA are recognised by all the authorities which are members of the group and carry the same validity as those issued by any of the member authorities.

Quality labels

When components can be used in domestic and similar applications, it is sometimes recommended that a "Quality label" be obtained, which is a form of certification of conformity.

Code	Quality label	Country
CEBEC	Comité Electrotechnique Belge	Belgium
KEMA-KEUR	Keuring van Electrotechnische Materialen	Netherlands
NF	Union Technique de l'Electricité	France
ÖVE	Österreichischer Verband für Electrotechnik	Austria
SEMKO	Svenska Electriska Materiel Kontrollanatalten	Sweden

Product certifications

In some countries, the certification of certain electrical components is a legal requirement. In this case, a certificate of conformity to the standard is issued by the official test authority. Each certified device must bear the relevant certification symbols when these are mandatory:

Code	Certification authority	Country
CSA	Canadian Standards Association	Canada
UL	Underwriters Laboratories	USA
CCC	China Compulsory Certification	China

Note on certifications issued by the Underwriters Laboratories (UL). There are two levels of approval:
"Recognized" ($7 \mathbf{7}$)
The component is fully approved for inclusion in equipment built in a workshop, where the operating limits are known by the equipment manufacturer and where its use within such limits is acceptable by the Underwriters Laboratories.
The component is not approved as a "Product for general use" because its manufacturing characteristics are incomplete or its application possibilities are limited.
A "Recognized" component does not necessarily carry the certification symbol.
"Listed" (UL) The component conforms to all the requirements of the classification applicable to it and may therefore be used both as a "Product for general use" and as a component in assembled equipment. A "Listed" component must carry the certification symbol

Marine classification societies

Prior approval (= certification) by certain marine classification societies is generally required for electrical equipment which is intended for use on board merchant vessels.

Code	Classification authority	Country
BV	Bureau Veritas	France
DNV	Det Norske Veritas	Norway
GL	Germanischer Lloyd	Germany
LR	Lloyd's Register	Great Britain
NKK	Nippon Kaiji Kyokaï	Japan
RINA	Registro Italiano Navale	Italy
RRS	Register of Shipping	Russia

Note

For further details on a specific product, please refer to the "Characteristics" pages in this catalogue or consult your Customer Care Centre.

Technical information
 Degrees of protection provided by enclosures IP code

Degrees of protection against the penetration of solid bodies, water and personnel access to live parts

The European standard EN 60529 dated October 1991, IEC publication 529 ($2^{\text {nd }}$ edition - November 1989), defines a coding system (IP code) for indicating the degree of protection provided by electrical equipment enclosures against accidental direct contact with live parts and against the ingress of solid foreign objects or water. This standard does not apply to protection against the risk of explosion or conditions such as humidity, corrosive gasses, fungi or vermin.
Certain equipment is designed to be mounted on an enclosure which will contribute towards achieving the required degree of protection (example : control devices mounted on an enclosure).
Different parts of an equipment can have different degrees of protection (example : enclosure with an opening in the base)
Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

IP •eゃ code

The IP code comprises 2 characteristic numerals (e.g. IP 55) and may include an additional letter when the actual protection of personnel against direct contact with live parts is better than that indicated by the first numeral (e.g. IP 20C). Any characteristic numeral which is unspecified is replaced by an X (e.g. IP XXB).

$1^{\text {st }}$ characteristic numeral:

corresponds to protection of the equipment against penetration of solid objects and protection of personnel against direct contact with live parts.

Protection of the equipment

$2^{\text {nd }}$ characteristic numeral:

corresponds to protection of the equipment against penetration of water with harmful effects.

Additional letter

corresponds to protection of personnel against direct contact with live parts.

Technical information
Degrees of protection provided by enclosures
IK code

The European standard EN 50102 dated March 1995 defines a coding system (IK code) for indicating the degree of protection provided by electrical equipment enclosures against external mechanical impact.
Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

IK •e code

The IK code comprises 2 characteristic numerals (e.g. IK 05).

2 characteristic numerals:

corresponding to a value of impact energy.

		$\mathrm{h}(\mathrm{cm})$	Energy (J)
00	Non-protected		
01		7.5	0.15
02		10	0.2
03		17.5	0.35
04		25	0.5
05		35	0.7
06	0,5 kg	20	1
07	-	40	2
08		30	5
09	kg	20	10
10		40	20

D	
DE9PEM20010	42
DE9RP13520	37
	39
X	
XC1AC111	28
XC1AC115	28
XC1AC116	28
XC1AC117	28
XC1AC118	28
XC1AC119	28
XC1AC121	28
XC1AC125	28
XC1AC126	28
XC1AC127	28
XC1AC128	28
XC1AC129	28
XC1AC131	28
XC1AC135	28
XC1AC136	28
XC1AC137	28
XC1AC138	28
XC1AC139	28
XC1AC141	28
XC1AC145	28
XC1AC146	28
XC1AC147	28
XC1AC148	28
XC1AC149	28
XC1AC151	28
XC1AC155	28
XC1AC156	28
XC1AC157	28
XC1AC158	28
XC1AC159	28
XC1AC161	28
XC1AC165	28
XC1AC166	28
XC1AC167	28
XC1AC168	28
XC1AC169	28
XC1AC171	28
XC1AC175	28
XC1AC176	28
XC1AC177	28
XC1AC178	28
XC1AC179	28
XC010L2	50
XC011L2	50
XCKMR24SR1H29	42
XCKMR44D1H29	42
XCKMR44D2H29	42
XCKMR54D1H29	42

XEP3S2W2B524	48
XEP3S2W2B529	48
XEP3S2W3	48
XEP3S2W3B524	48
XEP3S2W3B529	48
XEP3S2W6	48
XEP3S2W6B524	48
XEP3S2W6B529	48
XEP4E1FD	46
XEP4E1FDA326	46
XEP4E1FDA454	46
XEP4E1W7	46
XEP4E1W7A326	46
XEP4E1W7A454	46
XEP5P1W2	46
XEP5P1W2Z55B	46
XESP1021	17
	22
XESP1028	17
XESP1031	17
XESP1031	22
XESP1038	17
XESP10215	25
XESP10315	25
Z	
ZC1AC001	30
ZC1AC005	30
ZC1AC006	30
ZC1AC007	30
ZC1AC008	30
ZC1AC009	30
ZC1AZ8	30
ZC1AZ11	30
ZC1AZ12	30
ZC1AZ13	30
ZC1AZ14	30
ZC1AZ15	30
ZC1AZ16	30
ZC1AZ17	30
ZC2JC1	10
	13
ZC2JC2	13
ZC2JC4	13
ZC2JC15	23
ZC2JC16	20
ZC2JC18	13
ZC2JC25	23
ZC2JC26	20
ZC2JC28	13
ZC2JC45	23
ZC2JC46	20
ZC2JC48	13
ZC2JD1	13

ZC2JD2	13
ZC2JD4	13
ZC2JD16	20
ZC2JD26	20
ZC2JD46	20
ZC2JE01	10
ZC2JE02	15
ZC2JE03	15
ZC2JE04	15
ZC2JE05	15
ZC2JE06	10
ZC2JE07	15
ZC2JE09	15
ZC2JE015	15
ZC2JE016	24
ZC2JE025	21
ZC2JE026	21
ZC2JE035	24
ZC2JE036	21

ZC2JE656	20
ZC2JE665	23
ZC2JE666	20
ZC2JE705	24
ZC2JE706	21
ZC2JE815	23
ZC2JE816	20

ZC2JE825	23
ZC2JE826	20

ZC2JE835	23
ZC2JE836	20

ZC2JE845	23
ZC2JE846	20

ZC2JE855 23

ZC2JE856	20
ZC2JY11	10
	16

ZC2JY12	16
	22
	25

ZC2JY13	16
	22
	25

ZC2JY31	10
	16
	22

ZC2JY51	10
	16

	25
ZC2JY61	16
	22

ZC2JY71	16
	22
ZC2JY81	16

ZC2JY91	16
	22

ZC2JY115	25
ZC2JY215	25

ZC2JY315	25
ZC2JY415	25

ZC2JY615	25
ZC2JY715	25

ZC2JY815 25

ZC2JY915	25
ZEP3L524	48

ZEP3L529 48
ZEP4L326 46

ZC2JE626	20
ZC2JE635	23

ZC2JE636	20
ZC2 JE645	23

ZC2JE646 20
ZC2JE655 23
Head Office
35, rue Joseph Monier F-92500 Rueil-Malmaison France

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein.

Design: Schneider Electric
Photos: Schneider Electric

[^0]: Please refer to our catalogue "Limit switches OsiSense XC Standard"

[^1]: Please refer to our catalogue "Limit switches OsiSense XC Standard"

[^2]: Please refer to our catalogue "Limit switches OsiSense XC Standard"

[^3]: Please refer to our catalogue "Preventa XCS safety switches"

[^4]: (1) 3 tapped entries for $n^{\circ} 13$ cable gland or ISO 20 with adaptor DE9RA1620.

[^5]: Dimensions:

[^6]: \varnothing : 1 elongated hole $\varnothing 6 \times 8$

[^7]: Ø: 1 elongated hole $\varnothing 6 \times 8$.

[^8]: Or direction of rotation.

[^9]: (1) In order to avoid damage to the fixing spigots, removal of the lever from complete products is not recommended.
 (2) Switches sold in lots of 10 .
 (3) Levers only for mounting on basic (plunger) snap switches (XEP3S॰W2, XEP3S॰W3, XEP3S॰W6), in fixing positions A, B or C

[^10]: (1) Manual actuation must be made by an intermediate insulated part, in order to meet basic safety requirements.

 One of the two fixing holes must also be used as an earth protection terminal.
 (2) Distance between the base of the switch and the top of the plunger at the instant the contact changes state (see dimensions, page 50).

[^11]: (1) Usable up to $48 \mathrm{~V} / 10 \mathrm{~mA}$.

